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Abstract

An empirical analysis is performed of portfolios selected with re-
spect to value at risk on the Stock Exchange in Warsaw between the
years 1991–2008. Value at risk is estimated under normal or any con-
stant distribution of rates of return on time intervals. The methods
examined maximize expected portfolio return putting upper bound on
value at risk. It is shown that with probabilities much higher than the
level of value at risk true returns are lower than their bounds.

1 Introduction

Let X be a random variable. Value at risk at a level α ∈ (0, 1) is the
(1− α)-quantile of the distribution of −X [4, p. 168], i. e.

V aRα(X) = inf{x ∈ R : P (−X ≤ x) ≥ 1− α}
= − sup{x ∈ R : P (X < x) ≤ α}.

If X represents a portfolio return, the probability that it is lower than
−V aRα(X) is not grater than α. Thus, investors are interested in small
value at risk.

Given n assets whose rates of return r = (r1, . . . , rn) are random vari-
ables, the rate of return of the portfolio w = (w1, . . . , wn) ∈ Rn, wi ≥ 0,
i = 1, . . . , n,

∑n
i=1 wi = 1, can be expressed as X = wrT .

If r is distributed N(µ,Σ), X is distributed N(wµT , wΣwT ) and [4,
p. 173]

V aRα(X) = q
√

wΣwT − wµT , (1)

where q = Φ−1(1 − α) and Φ is the cumulative distribution function of
N(0, 1). Portfolio optimization problem can take the form:

maximize wµT

subject to q
√

wΣwT − wµT ≤ v∑n
i=1 wi = 1

wi ≥ 0

(2)
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The first and second derivatives of (1) are, respectively,

q√
wΣwT

wΣ− µ and
q√

wΣwT

(
Σ− ΣwT wΣ

wΣwT

)
.

Applying the Cauchy-Schwarz inequality to the scalar product 〈v, w〉 =
vΣwT it can be shown that the second derivative is nonnegative definite
(provided that α < 1/2), so (2) is a problem of convex optimization [3,
§13.3].

The purpose of this paper is to evaluate the fraction of crosses of value
at risk for optimal portfolios on the Stock Exchange in Warsaw from April
1991 until the end of 2008.

2 Methods

Apart from the level α, the experiment had three additional parameters:
the length of investment period f , the sample horizon h and the preferred
annual rate of return p which determined the upper bound of value at risk
v = −pf/360. Values considered were h = 90, 180 days, f = 1, 7, 30, 360
days, α = 0.01, 0.02, 0.05, p = 0.05, 0.10.

For each set of h, f , α, p and for each day d between 16 April 1991 and
31 December 2008, a sample of all assets was selected which were quoted on
each session of the Stock Exchange between d− f −h and d− 1 and on days
d and d + f , with d + f before 1 May 2009. If the sample had less than 2
assets or less than 30 observed rates of return from before d, it was rejected.
Data preceding d were used to estimate parameters µ and Σ by the method
of moments [2, p. 379] and the optimal portfolio was selected solving the
problem (2). Data from the days d and d + f were used to calculate the
true rate of return achieved by the selected portfolio. If it proved less than
−V aRα(X), value of risk was crossed [1, p. 466].

3 Results

The number of experiments for each set of parameters ranged from 1769 to
2811, depending on the sample horizon and the length of investment period.
A number of experiments had no feasible solution due to the first constraint
in (2); in these cases the method did not admit any portfolio to possess
value at risk low enough. In particular, daily investments were forbidden for
half-yearly horizon. The numbers of experiments for which a portfolio could
be created are given in table 1.

Relative frequencies α̂ of crosses are given in table 2. As the statistic√
n(α̂ − α)/

√
α(1− α), where n denotes the respective sample size from

table 1, is asymptotically distributed N(0, 1) [5, §2.7], each hypothesis that
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Table 1: Numbers of experiments for which portfolio (2) existed.
p = 0.05 p = 0.10

h α f f
1 7 30 360 1 7 30 360

0.01 111 749 1391 1742 98 719 1350 1721
90 0.02 135 859 1469 1751 121 804 1420 1735

0.05 184 1031 1566 1769 172 971 1535 1763
0.01 0 113 791 1608 0 96 736 1551

180 0.02 0 133 845 1691 0 125 815 1613
0.05 0 240 946 1745 0 225 880 1717

Table 2: Relative frequencies of crosses of value at risk for problem (2).
p = 0.05 p = 0.10

h α f f
1 7 30 360 1 7 30 360

0.01 0.41 0.47 0.55 0.80 0.41 0.48 0.57 0.80
90 0.02 0.41 0.45 0.55 0.82 0.37 0.46 0.56 0.83

0.05 0.43 0.47 0.58 0.84 0.41 0.47 0.59 0.85
0.01 – 0.29 0.50 0.69 – 0.32 0.51 0.72

180 0.02 – 0.32 0.51 0.72 – 0.31 0.52 0.75
0.05 – 0.38 0.54 0.75 – 0.38 0.55 0.76

the frequency of crosses is equal to the level of value at risk can be rejected
at significance level as small as 10−90.

4 Discussion

4.1 Nonparametric approach

Assumption of normality of returns made in section 1 is not necessary for
optimizing portfolio. Assuming no particular probability distribution func-
tion and basing on m historical observations ri = (ri1, . . . , rin), i = 1, . . . ,m,
V aRα(X) can be estimated as the (1 − α)-quantile of the empirical distri-
bution function of the variable −X, i. e. as [5, §2.1, §2.3]

inf

{
x ∈ R :

m∑

i=1

I(−wrT
i ≤ x) ≥ m(1− α)

}
,

where I(−wrT
i ≤ x) takes on value 1 if −wrT

i ≤ x and 0 otherwise. Using
the sample value at risk results in the problem

maximize wµT

subject to
∑m

i=1 I(−wrT
i ≤ v) ≥ m(1− α)∑n

i=1 wi = 1
wi ≥ 0

(3)
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Table 3: Numbers of experiments for which portfolio (3) existed.
p = 0.05 p = 0.10

h α f f
1 7 30 360 1 7 30 360

0.01 689 1571 1823 1769 656 1530 1800 1762
90 0.02 758 1823 1823 1769 729 1735 1800 1762

0.01 22 515 1351 1787 14 454 1306 1671
180 0.02 89 590 1466 1787 64 542 1373 1757

Table 4: Relative frequencies of crosses of value at risk for problem (3).
p = 0.05 p = 0.10

h α f f
1 7 30 360 1 7 30 360

0.01 0.46 0.48 0.56 0.84 0.48 0.48 0.58 0.84
90 0.02 0.46 0.48 0.56 0.84 0.48 0.48 0.58 0.84

0.01 0.50 0.49 0.52 0.72 0.57 0.49 0.54 0.78
180 0.02 0.38 0.48 0.54 0.74 0.47 0.49 0.56 0.75

The first condition in (3) states that the number of observations for which
−wrT

i ≤ v must not be less than m(1 − α). It is enough to limit this
number to k = dm(1−α)e. For each k-element subset {i1, . . . , ik} of the set
{1, . . . , m} the following linear programming problem should be solved

maximize wµT

subject to −wrT
i1

≤ v

· · ·
−wrT

ik
≤ v∑n

i=1 wi = 1
wi ≥ 0

(4)

and the maximum solution over these subsets should be selected.
Even though the number of problems (4) is

(
m
k

)
, as the number m of

observed rates of return was at most 126, it was possible to solve them for
α = 0.01, 0.02. It can be seen from tables 3 and 4 that there is no important
difference between the two approaches.

4.2 Value at risk in presence of commission

Taking into account a commission rate 0 ≤ c < 1 on each transaction, the
rate of return of the portfolio can be rewritten as X = C

(
1 + wrT

)−1, where
C = (1− c)/(1 + c).1 Since V aRα(X) = qC

√
wΣwT −C(1 + wµT ) + 1, the

1Investing capital K one assigns K/(1 + c) for assets and cK/(1 + c) for commission.
After buying (K/(1+ c))wi/pi assets at a price pi, and then selling them at a price p′i one
must assign c

P
(K/(1 + c))wip

′
i/pi for commission. The two operations yield the return

C
P

wi(p
′
i/pi)− 1 = C(1 +

P
wiri)− 1.
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problem equivalent to (2) is

maximize C(1 + wµT )− 1
subject to q

√
wΣwT − wµT ≤ 1 + (v − 1)/C∑n

i=1 wi = 1
wi ≥ 0

(5)

It is worth noting that for v < 1 the solution of (2) may be unfeasible for (5).
For both model (5) and its counterpart for (3), the greater the rate of

commission, the smaller the number of feasible portfolios and the greater the
frequency of crosses.

5 Conclusion

It has been proved that true rates of return of portfolios selected by maximiz-
ing expected rate of return at bounded value at risk frequently cross their
upper bounds. Unquestionably relative frequencies of such crosses fail to
meet the definition of value at risk. It may reasonably be doubted whether
rates of return of portfolios are independent and possess constant distri-
butions within intervals. Similar evidence was given in [6] about portfolio
selection based on the Markowitz portfolio theory.
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