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Abstract

The paper examines series of differences of logarithms of prices of 24 stocks
quoted on the Stock Exchange in Warsaw in 1991-1998. For some of the
stocks, first differences seem to be independent random variables distributed
according to a class of uncontinuous laws. For the others, higher differences
seem to follow a number of autoregressive processes with Laplace distributed
disturbances.
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1 Introduction.

It is often assumed that changes of prices of stocks are values taken on by ran-
dom variables. The reasonable question is whether or not changes of prices of
each stock are distributed according to the same law. After Bachelier [1] and
Mandelbrot [13], it is usually accepted that if such a law exists, it belongs
to the family of normal distributions or to the wider class of stable distribu-
tions. Both hypotheses have been carefully considered and extensively tested
(see [4], [11], [10], [16], [14], [9], [12] for example). Most of empirical works
refer to stocks quoted on the New York Stock Exchange. Some of the results
confirm normality of stock price changes, while the others confirm stability.
The purpose of this paper is to study distributions of stock price changes
on the Stock Exchange in Warsaw since its opening in 1991 until the end of
1998.

The Stock Exchange in Warsaw is a small exchange in an emerging econ-
omy with 11 billion dollars turnover in 1998 and 198 stocks quoted on the
last session that year. Every stock is quoted once a day at the price that
maximizes the trading volume. However, if the maximizing price is greater
(or lower) than the previous-day price by more than 10 per cent of the latter,
the current price is set to 110 (or 90) per cent of the previous-day price.
Nonetheless, absolute values of about 0.5 per cent of daily rates of return in
the period of 1991-1998 exceeded 10 per cent. Dividends are paid once a
year, the average dividend yield in 1998 being 0.9 per cent. Consequently,
prices considered hereafter have not been corrected with respect to dividends.

For any sequence of numbers {z;}°, we define the progressive difference
operator A, which assigns to {z;} the sequence {Axz;}°,, Az = 441 — 4,
and its powers:

Az, =z,

Algy=A (A4 M,), d=1,2,3,...

Let {z;}I_, be a series of natural logarithms of stock prices. We will be



examining the series
a, T4 _
{a mt}tzl , d=1,....6, (1)
for the first 24 stocks quoted on the exchange. The numbers of terms 7" vary
from 1140 to 1474 and are given in table 1.

2 Estimation and testing.

In the next section we examine stability of price changes. A necessary and
sufficient condition for a random variable to be stably distributed is that its
characteristic function is of the form [8]

¢(t) = exp{iat — [bt|*[1 + ifsgn(t)w(|t], )]}, (2)

where «, 3, a,b are real constants, 0 < a < 2, —1 < < 1,b> 0, sgn(t) is
equal to —1, 0 or 1 depending on whether ¢ is less, equal to or greater than
0, whereas

_ | tan(ma/2) if a#1,
w([tl, ) _{ (2/7)In|t| otherwise.

The parameter « is the characteristic exponent, § is an index of skewness,
a is the location parameter and b is the scale parameter. If § = 0, the
distribution is symmetric with respect to a. If @ > 1, a is the expected
value of the distribution. Values of the cumulative distribution function
and its derivatives may be evaluated on the basis of the formulae given by
Zolotarev [17].

In agreement with the theorem proved in [3], if the parameters 6 =
(e, B,a,b) of a stable distribution with characteristic function (2) belong
to the set

(o, B,a,b) s a € (6,1) U (1,2), |6 < 1,b > 0} ¢ RY, (3)

where € > 0 is arbitrary small, then the sequence 6, of maximum likelihood
estimators based on the first n independent observations is consistent and
asymptotically normal with mean 6 and covariance matrix n='1; ! where I,
is the Fisher information matrix. When estimating parameters of stable dis-
tributions for the series (1), we were maximizing the logarithm of likelihood

T—d
1(9) = Z In f(A%y; a, 3, a,b),
=1
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where f denotes the probability density corresponding with (2), on the
parameter space (3) by the method of Broyden, Fletcher, Goldfarb and
Shanno [15, chapt. 5.11]. As starting points for iterative processes, we took
the 1/2-truncated mean as an estimator of a and estimators of Fama and
Roll [5] for symmetric stable distributions as estimators of «, # and b. A
process was succesfull if after less than 40 iteration steps absolute values of
all derivatives of | with respect to parameters were less than 1072 and the
Fisher information matrix was positively defined.
In section 4 we estimate parameters of autoregressive models

Alzy = oo+ g1 A%+ .+ A%y, + &, t=1,...,T—d, (4)
for p,d=1,...,6, where ¢, 1, ..., p, are real parameters and

STRRREY S (5)

are independent identically Laplace distributed random variables. Since
probability density of Laplace distribution is given by

1
o XP1=lo —al/b},
where ¢ and b > 0 are median and absolute deviation, respectively, the
maximum likelihood estimates of parameters of autoregressive models are
the least absolute error estimates, which may be found by simplex method.

To test independence of random variables, we make use of the following
sign test. Let

Xl;---,Xna 77,21, (6)

be a sequence of identically distributed random variables. The distribution
of the number of runs of negative and non-negative elements in this series,
conditional on the number of elements of each kind, under assumption that
they are independent, may be found in [6, chapt. II.11]. Let p; and p, be the
probabilities that the number of runs is not greater and not less, respectively,
than that in the series. If p; < /2 or p, < «/2, the null hypothesis that (6)
are independent should be rejected at the significance level a.

We also employ the following x? and Kolmogorov-Smirnov goodness-of-fit
tests. Let (6) be a sequence of independent identically distributed random
variables possessing continuous cumulative distribution function F'(x;6), § =
(01,...,0,), and let F,,(z) be the sample cumulative distribution function of



the sample (6). If @ = (04, ...,0,,) is the maximum likelihood estimate of @
and
—o=a < <...<a,_1 <a =400, r=|Vn],

~ ~

are real numbers such that F(ay;0) — F(ag-1;0) = 1/r, k = 1,...,r, then
the statistic .
x> =rn ) [Fu(a) — Fa(ak-1)]> — n

k=1

has a limiting x? distribution with f = r — m — 1 degrees of freedom. If

D,, = sup |F,(z) — F(z;0)|
rzeR

is the Kolmogorov-Smirnov distance, the statistic v/nD,, has a limiting Kol-
mogorov distribution. Thus, as n is large, if p, = P(x} > x*) < a or
pk = P(K > \/nD,) < a with x7 and K having respectively x* distribution
with f degrees of freedom and Kolmogorov distribution we should reject the
null hypothesis that the true distribution of (6) is of the form F(z;#) at the
significance level a.

To simplify computations when dealing with residuals from autoregressive
models, we consider them to be independent, identically distributed random
variables. In other words, we consider estimates to be the true values of
unknown parameters.

3 Independence.

Table 1 lists values of p; and p, for these series (1) for which the hypothesis
of independence may not be rejected at the significance level 10719, It can be
seen that only all 24 series for d = 1 are included. It seems that only first dif-
ferences for PROCHNIK, SOKOLOW, VISTULA, WEDEL, WOLCZANKA
and ZYWIEC may be independent. This gives an idea of how strongly the
data contradict the hypothesis.

Unlike for the first differences, rejection of the null hypothesis for the next
differences occurs due to small values of p,. For d > 1, the smallest value of
pa is 1 —6-107'% and the greatest value of p, is 9 - 107'2. Thus, if we used
only one-sided version of the test, in no case could we reject the hypothesis
of independece for d > 1.



In spite of the above results, we have found the maximum likelihood
estimates of parameters of the the normal, stable and Laplace distributions
for series (1).

The x? test rejected the hypothesis of normality for series (1) at the
significance level as small as 107%. The number n(d) of successful estimations
of parameters of stable distributions for each d is given in table 2. The
next columns of the table contain, for some values of a, numbers n(d, ) of
successfully estimated series (1), for which the hypothesis of stability may not
be rejected by neither y? nor Kolmogorov-Smirnov goodness-of-fit test at the
significance level a. Results for Laplace distribution are given in the second
section of table 2 in the same manner. Since n(1,10™*) = 0 for both stable
and Laplace distributions, we reject the hypotheses that the first differences
are distributed according to any of these laws.

Figure 1 presents a typical sample cumulative distribution function of
Azx;. A point of discontinuity may be observed at 0 as about 11 to 20 per
cent of values of each series are exactly equal to 0. Furthermore, for each
series there exists a quite long neighbourhood of 0, say U, such that Az, ¢ U.
We do not analyse this distribution further on. Figures 2—4 present the three
approximations to the sample distribution function.

Let Ly, Ls and L, denote the maximized likelihood for respectively
normal, stable and Laplace families of distributions. Let us assume that each
series (1) is drawn from one of these distributions with the same probability.
Then, the probability of drawing from Laplace distribution, conditional on
the sample, is

L.
Ly+Ls+ L,

For all series (1), d = 1, for which all three likelihoods were known, these
statistics are greater than 1 — 6 - 107!5. Thus, if any series Az; was drawn
from one of the three laws, it was rather drawn from the Laplace law.

Comparing results for normal, stable and Laplace distributions, we may
found that the distance between the sample cumulative distribution func-
tion and the estimated distribution is most frequently minimized by Laplace
distribution.




4 Dependence.

In this section we consider the class of autoregressive models of the form (4).
It may easily be shown that the common distribution of disturbances (5) does
not belong to the class of normal distributions. Namely, after estimating
models (4) for series (1) as if disturbances (5) were normally distributed
by the method of maximum likelihood and applying the sign test and the
x? goodness-of-fit test to the series of residuals we may found that there is
no series for which simultaneously p, > 107°, p, > 107° and p, > 107°.
Moreover, it has been shown in [7] that processes (1) do not belong to the
class of ARMA, GARCH and ARMA-GARCH(1,1) models of low orders with
normally distributed disturbances.

Situation becomes entirely different if we assume that distributions of
disturbances (5) are elements of the class of Laplace distributions.

Table 3 presents numbers n(d, ) of series (1) for which hypotheses of
independent and identically Laplace distributed disturbances (5) may not be
rejected by neither sign nor goodness-of-fit tests at the significance level a.
For d = 2 and o = 0.01, there exists an appropriate model for each stock
except just for WOLCZANKA and ZYWIEC. Numerical results of testing
residuals for all models (4) with p;, py, p, and pg greater than 0.1 are given
in table 4.

5 Conclusion.

It seems that stocks on the Stock Exchange in Warsaw may be classified into
three groups:

6 stocks, for which first differences of logarithms of prices are independent
identically distributed random variables with unknown uncontinuous
distributions,

13 stocks, for which there exist d > 1 such that d-th differences of loga-
rithms of prices are autoregressive processes of order p for some p > 1
with Laplace distributed disturbances (in most cases d = 2 or d = 3),

5 stocks, for which existence of such autoregressive integrated processes is
uncertain.

ARGO S. A., Gdansk
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Figure 1: Sample cdf. of first differences of logarithms of prices for VISTULA.
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Figure 2: Sample cdf. of first differences of logarithms of prices for VISTULA
and cdf. of fitted normal distribution.
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Figure 3: Sample cdf. of first differences of logarithms of prices for VISTULA
and cdf. of fitted stable distribution.
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Figure 4: Sample cdf. of first differences of logarithms of prices for VISTULA
and cdf. of fitted Laplace distribution.
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Table 1: Sign test. Critical levels greater than 1071°, d = 1.

STOCK T D Pyg

BIG 1372 0.0070 0.9940
BRE 1361 0.0000 1.0000
BSK 1176 0.0000 1.0000
EFEKT 1237 0.0114 0.9903
ELEKTRIM 1413 0.0000 1.0000
EXBUD 1474 0.0000 1.0000
IRENA 1429 0.0000 1.0000
KABLE 1472 0.0059 0.9950
KROSNO 1474 0.0002 0.9998

MOSTALEXP 1398 0.0042 0.9965
MOSTALWAR 1218 0.0014 0.9989
OKOCIM 1425 0.0004 0.9997
POLIFARBC 1283 0.0018 0.9985
PROCHNIK 1473 0.3748 0.6448
RAFAKO 1140 0.0000 1.0000
SOKOLOW 1246 0.1383 0.8744
SWARZEDZ 1464 0.0021 0.9982

TONSIL 1469 0.0093 0.9920
UNIVERSAL 1385 0.0001 1.0000
VISTULA 1224 0.3848 0.6379
WBK 1265 0.0004 0.9997
WEDEL 1257 0.1025 0.9083
WOLCZANKA 1462 0.1321 0.8788
ZYWIEC 1445 0.3056 0.7126
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Table 2: Numbers of series which conform with a stable law or a Laplace
law.

d n(d) n(d,107%) n(d,10°3) n(d,0.01) n(d,0.05) n(d,0.1)

Stable law
1 13 0 0 0 0 0
2 17 0 0 0 0 0
3 20 0 0 0 0 0
4 22 13 11 7 ) 3
5 19 17 12 9 6 5
6 22 15 11 10 6 4
Laplace law
1 24 0 0 0 0 0
2 24 0 0 0 0 0
3 24 9 3 2 1 1
4 24 23 21 17 11 9
5 24 23 22 21 19 18
6 24 23 22 22 20 16
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Table 3: Numbers of series which conform with an autoregressive model with

Laplace distributed residuals.

d n(d) n(d,107*) n(d,1073) n(d,0.01) n(d,0.05) n(d,0.1)
1 144 0 0 0 0 0

2 144 115 95 69 38 23

3 144 94 70 42 12 4

4 144 58 38 12 3 0

5 144 35 18 8 1 1

6 144 7 2 0 0 0
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Table 4: Autoregressive models with Laplace distributed residuals, critical
levels greater than 0.1.

STOCK d p p Dy Dy PK

BSK 5 6 0.8795 0.1326 0.5960 0.9496
EFEKT 3 4 0.8670 0.1456 0.1295 0.6954
ELEKTRIM 2 2 0.9087 0.1004 0.2507 0.8609
ELEKTRIM 2 5 0.2698 0.7476 0.1463 0.6918
ELEKTRIM 2 6 0.1001 0.9089 0.1235 0.3901
IRENA 2 2 0.7867 0.2290 0.2588 0.8701
KABLE 2 4 0.7757 0.2403 0.2026 0.8035
KROSNO 2 3 0.7832 0.2324 0.2409 0.3815
MOSTALEXP 2 2 0.8258 0.1883 0.1189 0.8585
MOSTALEXP 2 3 0.3340 0.6852 0.2767 0.7522
MOSTALEXP 2 4 0.3438 0.6757 0.7701 0.9583
MOSTALEXP 2 5 0.3943 0.6262 0.5050 0.8084
MOSTALEXP 3 5 0.7314 0.2865 0.1441 0.9184
MOSTALWAR 2 2 0.3761 0.6455 0.4303 0.9999
MOSTALWAR 2 3 0.3026 0.7172 0.3173 0.6967
OKOCIM 2 3 0.8618 0.1502 0.2574 1.0000
OKOCIM 2 4 0.4789 0.5422 0.1003 0.9459
POLIFARBC 2 3 0.8498 0.1637 0.7479 0.9148
POLIFARBC 3 6 0.6422 0.3789 0.2609 0.8462
RAFAKO 2 3 0.7622 0.2566 0.3900 0.5852
RAFAKO 2 5 0.4763 0.5473 0.1295 0.9203
RAFAKO 2 6 0.2471 0.7712 0.2199 0.6669
SOKOLOW 2 3 0.7150 0.3046 0.1162 0.3578
SWARZEDZ 2 4 0.7763 0.2397 0.5692 0.7880
SWARZEDZ 2 5 0.2821 0.7353 0.2250 0.2652
VISTULA 2 2 0.7450 0.2737 0.1613 0.7325
WBK 2 4 04775 0.5449 0.8423 0.7819
WEDEL 3 5 0.1288 0.8827 0.2117 0.7716
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