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Abstract

Hidden Markov models and Markov-switching models are estimated
for 49 long-listed stocks quoted on the Stock Exchange in Warsaw. A
test is performed for each model to compare empirical autocorrelation
functions of absolute and squared returns and those of the model. On
the basis of test results one can state that the two kinds of models
fail to explain the behaviour of asset returns on the Warsaw Stock
Exchange.

1 Introduction

In 1995 Granger and Ding [6] [7] formulated some stylized facts for daily
return series (Xt). One of their temporal properties was as follows [9]:

TP2: The autocorrelation functions of |Xt| and X2
t decay slowly

starting from the first autocorrelation, and corr(|Xt|, |Xt−k|) >
corr(X2

t , X2
t−k). The decay is much slower than the exponential

rate of a stationary AR(1) or ARMA(1, q) model. The autocor-
relations remain positive for very long lags.

In 1998 Rydén, Teräsvirta and Åsbrink [9] applied the hidden Markov model
to subsets of the daily S&P 500 series and concluded that the only stylized
fact that cannot be reproduced by this model is TP2. In 2006 Bulla and
Bulla [3] introduced hidden semi-Markov models and compared them to the
hidden Markov models using 18 series of daily European sector indices. They
stated that hidden semi-Markov models reproduce the shape of empirical
autocorrelation function of X2

t much better than hidden Markov models. In
2004 Bialkowski [2] used the hidden Markov models with two and three states
to study monthly returns of six European indices, including the Warsaw
Stock Exchange WIG, but did not investigate TP2.
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It is a purpose of this paper to study if the property TP2 could be
reproduced by hidden Markov models or Markov-switching models in case
of asset returns quoted on the Stock Exchange in Warsaw.

2 Methods

It is assumed that a hidden Markov model is a discrete process

(Ct, Xt)∞t=1, (1)

where (Ct) is an m-state homogeneous Markov chain with initial state dis-
tribution δ and transition matrix Γ and (Xt) is a sequence of independent
random variables such that the conditional distribution of Xt depends only
on Ct [4, p. 1]. If, given Ct = i, Xt is distributed N(µi, σ

2
i ), the hidden

Markov model is called a normal hidden Markov model [4, p. 13] and may
be written as

Xt = µCt + σCtεt, (2)

where (εt) is a sequence of independent standard normally distributed vari-
ables.

If the conditional distribution of Xt depends not only on Ct but also on
Xt−1, . . . , Xt−k, the process (1) is called a Markov-switching model [4, p. 5].
If, given Ct = i,Xt−1, . . . , Xt−k, Xt is distributed N(0, σ2

i ), the Markov-
switching model may be written as

Xt = αCt,1Xt−1 + . . . + αCt,kXt−k + σCtεt. (3)

Having an observation sequence x1, . . . , xT from the model (2), the like-
lihood of the sample is [11, p. 37]

L(δ,Γ, θ1, . . . , θm) = δP1ΓP2ΓP3 . . .ΓPT1T ,

where θi = (µi, σi), Pt is a diagonal matrix with the i-th diagonal element

pit =
1

σi

√
2π

exp
{
−(xt − µi)2

2σ2
i

}

and 1 is a row vector of ones. The likelihood can be maximized by the
Baum-Welch algorithm [1].

For the model (3), the likelihood function for a sample x1−k, . . . , xT is
[10, p. 322]

L(δ, Γ, α1, . . . , αm, σ1, . . . , σm) = δΓP1ΓP2 . . .ΓPT1T ,

where αi = (αi1, . . . , αik) and Pt is a diagonal matrix with the i-th diagonal
element

pit =
1

σi

√
2π

exp
{
− 1

2σ2
i

(xt − αi1xt−1 − . . .− αikxt−k)
2

}
.
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The likelihood was maximized by the BOBYQUA algorithm of M. J. D.
Powell [8].1

The data set consists of 49 longest-listed stocks quoted on the Stock
Exchange in Warsaw between April 1991 and June 2010. Depending on the
series, from 3062 to 4334 observations were used for estimation. The process
of preparing data is described in more detail in [5].

3 Results

For each series of returns, six models have been estimated: three models (2)
for m = 2, 3, 4 and three models (3) for m = 2, 3, 4 and k = 1. All respective
Markov chains proved to be irreducible, aperiodic and possessing unique
stationary distributions. From now on, estimated parameters with δ replaced
by the stationary distributions are treated as true parameters.

Figures 1 and 2 picture autocorrelation functions of absolute and squared
returns of empirical data and models (2) and (3) with m = 4 for the first
three stocks. For models (2) autocorrelations can be found analytically [11,
p. 34]. For models (3) the Monte Carlo method has been used. The decay of
empirical autocorrelation functions is distinctly extremely slow as opposed
to autocorrelation functions of the models.

Let (ρi)n
i=1 and (ri)n

i=1 denote autocorrelation function of absolute or
squared returns of an investigated model and that of a series generated by
the model, respectively. The distance between (ri) and (ρi) can be measured
by

dp =

(
n∑

i=1

|ri − ρi|p
)1/p

, p = 1, 2 and d∞ = max
i=1,...,n

|ri − ρi|. (4)

Let (r0
i ) be the empirical autocorrelation function of absolute or squared

returns and let d0
p be the distance between (r0

i ) and (ρi). A Monte Carlo ap-
proximation to the probability P(dp ≥ d0

p) can be used to evaluate adequacy
of the model. Each Monte Carlo experiment was based on 10000 generated
series.

Tables 1 and 2 present all these approximations to P(dp ≥ d0
p), p =

1, 2,∞, which simultaneously proved to be not less than 0,01. As can be
seen in table 1, VISTULA is the only stock whose autocorrelation function
of absolute returns can be well approximated by a hidden Markov model but
this model fails to approximate autocorrelation function of squared returns.
The same may be noticed on Markov-switching models.

1A C++ translation of Steven G. Johnson from The NLopt nonlinear-optimization
package, http://ab-initio.mit.edu/nlopt, was used.
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Figure 1: Autocorrelation functions of absolute returns for the first three
stocks: empirical (solid line), estimated normal hidden Markov model (2)
with four states (dashed line) and estimated Markov-switching model (3)
with four states and one lagged return (dotted line).
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Figure 2: Autocorrelation functions of squared returns for the first three
stocks: empirical (solid line), estimated normal hidden Markov model (2)
with four states (dashed line) and estimated Markov-switching model (3)
with four states and one lagged return (dotted line).
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Table 1: Monte Carlo approximations to P(dp ≥ d0
p) not less than 0,01 for

normal hidden Markov models.
Stock P(d1 ≥ d0

1) P(d2 ≥ d0
2) P(d∞ ≥ d0∞)

m = 3, absolute returns
VISTULA 0,0188 0,0177 0,0357

m = 2, squared returns
ADVADIS 0,9774 0,1774 0,0288
BORYSZEW 1,0000 1,0000 0,4125
NFIEMF 1,0000 1,0000 0,5151
WILBO 1,0000 0,9786 0,0432

m = 3, squared returns
ADVADIS 0,9783 0,2200 0,0559
BANKBPH 0,8938 0,8384 0,7032
BBICAPNFI 0,7514 0,8060 0,9191
BBIZENNFI 0,9985 0,2466 0,0308
BORYSZEW 0,7926 0,7991 0,8271
IGROUP 0,0828 0,0195 0,0128
MIDAS 0,4056 0,0798 0,1482
NFIEMF 1,0000 1,0000 0,6972
WILBO 0,9981 0,7563 0,2869

m = 4, squared returns
08OCTAVA 0,9234 0,8438 0,8574
ADVADIS 0,8541 0,3023 0,3103
ALMA 0,0174 0,0224 0,0787
BANKBPH 0,9080 0,8649 0,7127
BBICAPNFI 0,8450 0,8530 0,9344
BBIDEVNFI 0,0196 0,0299 0,0197
BBIZENNFI 0,9965 0,3492 0,0604
BORYSZEW 0,7752 0,8179 0,7830
ECHO 0,4814 0,3878 0,3346
JUPITER 0,1505 0,0220 0,0295
KRUSZWICA 0,0195 0,0183 0,0646
MIDAS 0,3719 0,1453 0,2321
MOSTALEXP 0,0697 0,0714 0,1435
NFIEMF 0,9806 0,9732 0,9090
RELPOL 0,2986 0,3776 0,5315
RUBICON 0,6749 0,4614 0,4118
SWIECIE 0,3548 0,0775 0,0252
WILBO 0,9740 0,8839 0,4426
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Table 2: Monte Carlo approximations to P(dp ≥ d0
p) not less than 0,01 for

Markov-switching models.

Stock P(d1 ≥ d0
1) P(d2 ≥ d0

2) P(d∞ ≥ d0∞)

m = 3, absolute returns
VISTULA 0,0884 0,0801 0,0799

m = 2, squared returns
ADVADIS 0,9770 0,1783 0,0316
BORYSZEW 1,0000 0,9999 0,4035
NFIEMF 1,0000 1,0000 0,5355
WILBO 1,0000 0,9892 0,0392

m = 3, squared returns
BORYSZEW 0,8254 0,7873 0,7715
IGROUP 0,0808 0,0258 0,0200
KREZUS 0,0103 0,0207 0,2432
MIDAS 0,3836 0,0937 0,1851
NFIEMF 1,0000 1,0000 0,6993
WILBO 0,9990 0,7239 0,2339

m = 4, squared returns
08OCTAVA 0,8662 0,8033 0,6370
APATOR 0,1185 0,0548 0,0563
BANKBPH 0,9362 0,8248 0,6465
BBICAPNFI 0,9004 0,2651 0,0613
BBIDEVNFI 0,0237 0,0402 0,0331
BORYSZEW 0,6995 0,7344 0,8634
ECHO 0,5722 0,4021 0,3423
IGROUP 0,0303 0,0241 0,0435
KREZUS 0,0163 0,0324 0,2875
MIDAS 0,3366 0,0937 0,1899
NFIEMF 1,0000 1,0000 0,9082
RAFAKO 0,6197 0,1278 0,0296
RELPOL 0,3448 0,3607 0,4558
RUBICON 0,3334 0,1160 0,0550
SWIECIE 0,9904 0,8234 0,1743
WILBO 0,7675 0,7831 0,4832
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4 Conclusion

As it was pointed out in [3, sec. 3], the limitation of models based on Markov
chains is geometric distribution of sojourn time in a single state. Namely,
if Ct = i, the probability that (Ct) remains in the state i until the moment
t + k is γk

ii(1− γii).
From the results of tests it would seem that both hidden Markov mod-

els and Markov-switching models in the forms we considered have failed to
explain the behaviour of asset returns on the Warsaw Stock Exchange.
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